Global Controllability of the Kawahara Equation at Any Time

Autor: Ahamed, Sakil, Mondal, Debanjit
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this article, we prove that the nonlinear Kawahara equation on the periodic domain \(\mathbb{T}\) (the unit circle in the plane) is globally approximately controllable in \(H^s(\mathbb{T})\) for \(s \in \mathbb{N}\), at any time \(T > 0\), using a two-dimensional control force. The proof is based on the Agrachev-Sarychev approach in geometric control theory.
Comment: 20 pages, 1 figure
Databáze: arXiv