Popis: |
New selected values of odd random simplex volumetric moments (moments of the volume of a random simplex picked from a given body) are derived in an exact form in various bodies in dimensions three, four, five, and six. In three dimensions, the well-known Efron's formula was used by Buchta & Reitzner and Zinani to deduce the mean volume of a random tetrahedron in a tetrahedron and a cube. However, for higher moments and/or in higher dimensions, the method fails. As it turned out, the same problem is also solvable using the Blashke-Petkantschin formula in Cartesian parametrisation in the form of the Canonical Section Integral (Base-height splitting). In our presentation, we show how to derive the older results mentioned above using our base-height splitting method and also touch on the essential steps of how the method translates to higher dimensions and for higher moments. |