Transcendence of Hecke-Mahler Series
Autor: | Luca, Florian, Ouaknine, Joel, Worrell, James |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove transcendence of the Hecke-Mahler series $\sum_{n=0}^\infty f(\lfloor n\theta+\alpha \rfloor) \beta^{-n}$, where $f(x) \in \mathbb{Z}[x]$ is a non-constant polynomial $\alpha$ is a real number, $\theta$ is an irrational real number, and $\beta$ is an algebraic number such that $|\beta|>1$. |
Databáze: | arXiv |
Externí odkaz: |