Transcendence of Hecke-Mahler Series

Autor: Luca, Florian, Ouaknine, Joel, Worrell, James
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove transcendence of the Hecke-Mahler series $\sum_{n=0}^\infty f(\lfloor n\theta+\alpha \rfloor) \beta^{-n}$, where $f(x) \in \mathbb{Z}[x]$ is a non-constant polynomial $\alpha$ is a real number, $\theta$ is an irrational real number, and $\beta$ is an algebraic number such that $|\beta|>1$.
Databáze: arXiv