Bumblebee: Foundation Model for Particle Physics Discovery
Autor: | Wildridge, Andrew J., Rodgers, Jack P., Colbert, Ethan M., yao, Yao, Jung, Andreas W., Liu, Miaoyuan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Bumblebee is a foundation model for particle physics discovery, inspired by BERT. By removing positional encodings and embedding particle 4-vectors, Bumblebee captures both generator- and reconstruction-level information while ensuring sequence-order invariance. Pre-trained on a masked task, it improves dileptonic top quark reconstruction resolution by 10-20% and excels in downstream tasks, including toponium discrimination (AUROC 0.877) and initial state classification (AUROC 0.625). The flexibility of Bumblebee makes it suitable for a wide range of particle physics applications, especially the discovery of new particles. Comment: 5 pages, 3 figures, submitted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2024 |
Databáze: | arXiv |
Externí odkaz: |