KPZ-like scaling on a high-dimensional hypersphere
Autor: | Fedotov, Daniil, Nechaev, Sergei |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the orientational diffusion controlled by the hyperspherical Laplacian, $\nabla^2_D$, on the surface of the $D$--dimensional hypersphere in the limit $D \to \infty$. We find that for stretched paths with lengths relatively short compared to the hypersphere's radius, the finite-size corrections in orientational correlations are controlled by the Kardar-Parisi-Zhang (KPZ) scaling exponent, $\gamma = 1/3$. In addition, we speculate about the topology of the orientational target space representing the surface of the hypersphere. Comment: 11 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |