Borg-type theorem for a class of fourth-order differential operators

Autor: Guan, Ai-Wei, Yang, Chuan-Fu, Bondarenko, Natalia P.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we study an inverse spectral problem for the fourth-order differential equation $y^{(4)} - (p y')' + q y = \lambda y$ with real-valued coefficients $p$ and $q$ of $L^2(0,1)$. We prove that, for near-constant coefficients, the two spectra corresponding to the Dirichlet and the Dirichlet-Neumann boundary conditions uniquely determine either $p$ or $q$. The result extends the Borg theorem of the second-order case to the fourth-order case.
Databáze: arXiv