Borg-type theorem for a class of fourth-order differential operators
Autor: | Guan, Ai-Wei, Yang, Chuan-Fu, Bondarenko, Natalia P. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we study an inverse spectral problem for the fourth-order differential equation $y^{(4)} - (p y')' + q y = \lambda y$ with real-valued coefficients $p$ and $q$ of $L^2(0,1)$. We prove that, for near-constant coefficients, the two spectra corresponding to the Dirichlet and the Dirichlet-Neumann boundary conditions uniquely determine either $p$ or $q$. The result extends the Borg theorem of the second-order case to the fourth-order case. |
Databáze: | arXiv |
Externí odkaz: |