Bilinear singular integral operators with kernels in weighted spaces
Autor: | Honzík, Petr, Lappas, Stefanos, Slavíková, Lenka |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study boundedness properties of one-dimensional bilinear singular integral operators with homogeneous kernels whose restriction $\Omega$ to the unit sphere $\mathbb S^1$ has vanishing integral and belongs to $L^q(\mathbb S^1)$ for some $q>1$. Under the additional assumption that $\Omega$ is supported away from certain degenerate points, we establish the full quasi-Banach range of $L^{p_1}(\mathbb R) \times L^{p_2}(\mathbb R) \rightarrow L^p(\mathbb R)$ bounds, corresponding to any $1 Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |