Popis: |
The Compton-thick Active Galactic Nuclei (AGN) arguably constitute the most elusive class of sources as they are absorbed by large column densities above logN_H(cm^-2)=24. These extreme absorptions hamper the detection of the central source even in hard X-ray energies. In this work, we use both SWIFT and NuSTAR observations in order to derive the most accurate yet Compton-thick AGN luminosity function. We, first, compile a sample of candidate Compton-thick AGN (logN_H(cm^-2)= 24-25) detected in the Swift BAT all-sky survey in the 14-195 keV band. We confirm that they are Compton-thick sources by using the follow-up NuSTAR observations already presented in the literature. Our sample is composed of 44 sources, consistent with a column density of logN_H(cm^-2)=24-25 at the 90% confidence level. These have intrinsic luminosities higher than L(10-50 keV) ~ 3x10^41 erg/s and are found up to a redshift of z=0.05 (200 Mpc). We derive the luminosity function of Compton-thick AGN using a Bayesian methodology where both the full column density and the luminosity distributions are taken into account. The faint end of the luminosity function is flat, having a slope of 0.01(+0.51,-0.74), rather arguing against a numerous population of low luminosity Compton-thick AGN. Based on our luminosity function, we estimate that the fraction of Compton-thick AGN relative to the total number of AGN is of the order of 24 (+5,-5) % in agreement with previous estimates in the local Universe based on BAT samples. |