Rotational Velocities and Radii Estimates of Low-Mass Pre-Main Sequence Stars in NGC 2264
Autor: | Gray, Laurin M., Rhode, Katherine L., Hamilton-Drager, Catrina M., Picard, Tiffany, Rebull, Luisa M. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.3847/1538-4357/ad924b |
Popis: | Investigating the angular momentum evolution of pre-main sequence (PMS) stars provides important insight into the interactions between Sun-like stars and their protoplanetary disks, and the timescales that govern disk dissipation and planet formation. We present projected rotational velocities (v sin i values) of 254 T Tauri stars (TTSs) in the ~3 Myr-old open cluster NGC 2264, measured using high-dispersion spectra from the WIYN 3.5m telescope's Hydra instrument. We combine these with literature values of temperature, rotation period, luminosity, disk classification, and binarity. We find some evidence that Weak-lined TTSs may rotate faster than their Classical TTS counterparts and that stars in binary systems may rotate faster than single stars. We also combine our v sin i measurements with rotation period to estimate the projected stellar radii of our sample stars, and then use a maximum likelihood modeling technique to compare our radii estimates to predicted values from stellar evolution models. We find that starspot-free models tend to underestimate the radii of the PMS stars at the age of the cluster, while models that incorporate starspots are more successful. We also observe a mass dependence in the degree of radius inflation, which may be a result of differences in the birthline location on the HR diagram. Our study of NGC 2264 serves as a pilot study for analysis methods to be applied to four other clusters ranging in age from 1 to 14 Myr, which is the timescale over which protoplanetary disks dissipate and planetary systems begin to form. Comment: 23 pages, 8 figures. Accepted for publication in The Astrophysical Journal |
Databáze: | arXiv |
Externí odkaz: |