Infinite families of irreducible polynomials over finite fields
Autor: | Cheng, Kaimin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $p$ be a prime number and $q$ a power of $p$. Let $\fq$ be the finite field with $q$ elements. For a positive integer $n$ and a polynomial $\varphi(X)\in\fq[X]$, let $d_{n,\varphi}(X)$ denote the denominator of the $n$th iterate of $\frac{1}{\varphi(X)}$. The polynomial $\varphi(X)$ is said to be inversely stable over $\fq$ if all polynomials $d_{n,\varphi}(X)$ are irreducible polynomial over $\fq$ and distinct. In this paper, we characterize a class of inversely stable polynomials over $\fq$. Actually, for $\varphi(X)=X^p-X+\xi\in\fq[X]$, we provide a sufficient and necessary condition for $\varphi(X)$ to be inversely stable over $\fq$. Comment: 7 pages |
Databáze: | arXiv |
Externí odkaz: |