First Measurements of the 4-Point Correlation Function of Magnetohydrodynamic Turbulence as a Novel Probe of the Interstellar Medium
Autor: | Williamson, Victoria, Sunseri, James, Slepian, Zachary, Hou, Jiamin, Greco, Alessandro |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In the Interstellar Medium (ISM), gas and dust evolve under magnetohydrodynamic (MHD) turbulence. This produces dense, non-linear structures that then seed star formation. Observationally and theoretically, turbulence is quantified by summary statistics such as the 2-Point Correlation Function (2PCF) or its Fourier-space analog the power spectrum. These cannot capture the non-Gaussian correlations coming from turbulence's highly non-linear nature. We here for the first time apply the 4-Point Correlation Function (4PCF) to turbulence, measuring it on a large suite of MHD simulations that mirror, as well as currently possible, the conditions expected in the ISM. The 4PCF captures the dependence of correlations between quadruplets of density points on the geometry of the tetrahedron they form. Using a novel functionality added to the \textsc{sarabande} code specifically for this work, we isolate the purely non-Gaussian piece of the 4PCF. We then explore simulations with a range of pressures, $P$, and magnetic fields, $B$ (but without self-gravity); these are quantified by different sonic $(M_{\rm S})$ and Alfv\'enic $(M_{\rm A})$ Mach numbers. We show that the 4PCF has rich behavior that can in future be used as a diagnostic of ISM conditions. We also show that a large-scale coherent magnetic field leads to parity-odd modes of the 4PCF, a clean test of magnetic field coherence with observational ramifications. All our measurements of the 4PCF (10 $M_{\rm S}, M_{\rm A}$ combinations, 9 time-slices for each, 34 4PCF modes for each) are made public for the community to explore. Comment: 44 pages, 38 figures, submitted MNRAS |
Databáze: | arXiv |
Externí odkaz: |