Using Catalan words and $q$-shuffle algebras to describe the Damiani-Beck PBW bases for the positive parts of quantum affine superalgebra $U_q(C(2)^{(2)})$ and quantum admissible affine algebra $\mathcal{U}_q(\widehat{\mathfrak{s l}}_2)$
Autor: | Hu, Naihong, Zhong, Xin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the positive parts $U_q^{+}$ of the quantum affine superalgebra $U_q(C(2)^{(2)})$ and the quantum admissible affine algebra $\mathcal{U}_q(\widehat{\mathfrak{s l}}_2)$ newly defined in \cite{HZ}, which both have presentations with two generators $e_{\alpha}, e_{\delta-\alpha}$ that satisfy the cubic $q$-Serre relations. There are the Damiani and the Beck $PBW$ bases for those two algebras due to Khoroshkin-Lukierski-Tolstoy and Hu-Zhuang, respectively. In this paper, we use $q$-shuffle algebras and Catalan words to express those two bases in closed form. Finally, the equitable presentations of $U_q(C(2)^{(2)})$ and $\mathcal{U}_q(\widehat{\mathfrak{s l}}_2)$ are exhibited. Comment: 20 pages. arXiv admin note: text overlap with arXiv:2108.12708, arXiv:1806.11228 by other authors |
Databáze: | arXiv |
Externí odkaz: |