$\left(p,q\right)$-adic Analysis and the Collatz Conjecture
Autor: | Siegel, Maxwell Charles |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | What use can there be for a function from the $p$-adic numbers to the $q$-adic numbers, where $p$ and $q$ are distinct primes? The traditional answer, courtesy of the half-century old theory of non-archimedean functional analysis: not much. It turns out this judgment was premature. '$\left(p,q\right)$-adic analysis' of this sort appears to be naturally suited for studying the infamous Collatz map and similar arithmetical dynamical systems. Given such a map $H:\mathbb{Z}\rightarrow\mathbb{Z}$, one can construct a function $\chi_{H}:\mathbb{Z}_{p}\rightarrow\mathbb{Z}_{q}$ for an appropriate choice of distinct primes $p,q$ with the property that $x\in\mathbb{Z}\backslash\left\{ 0\right\} $ is a periodic point of $H$ if and only if there is a $p$-adic integer $\mathfrak{z}\in\left(\mathbb{Q}\cap\mathbb{Z}_{p}\right)\backslash\left\{ 0,1,2,\ldots\right\} $ so that $\chi_{H}\left(\mathfrak{z}\right)=x$. By generalizing Monna-Springer integration theory and establishing a $\left(p,q\right)$-adic analogue of the Wiener Tauberian Theorem, one can show that the question 'is $x\in\mathbb{Z}\backslash\left\{ 0\right\} $ a periodic point of $H$?' is essentially equivalent to 'is the span of the translates of the Fourier transform of $\chi_{H}\left(\mathfrak{z}\right)-x$ dense in an appropriate non-archimedean function space?' This presents an exciting new frontier in Collatz research, and these methods can be used to study Collatz-type dynamical systems on the lattice $\mathbb{Z}^{d}$ for any $d\geq1$. Comment: This is the author's PhD dissertation. 467 pages. 1 table |
Databáze: | arXiv |
Externí odkaz: |