Popis: |
As numerical simulations grow in size and complexity, they become increasingly resource-intensive in terms of time and energy. While specialized hardware accelerators often provide order-of-magnitude gains and are state of the art in other scientific fields, their availability and applicability in computational neuroscience is still limited. In this field, neuromorphic accelerators, particularly mixed-signal architectures like the BrainScaleS systems, offer the most significant performance benefits. These systems maintain a constant, accelerated emulation speed independent of network model and size. This is especially beneficial when traditional simulators reach their limits, such as when modeling complex neuron dynamics, incorporating plasticity mechanisms, or running long or repetitive experiments. However, the analog nature of these systems introduces new challenges. In this paper we demonstrate the capabilities and advantages of the BrainScaleS-1 system and how it can be used in combination with conventional software simulations. We report the emulation time and energy consumption for two biologically inspired networks adapted to the neuromorphic hardware substrate: a balanced random network based on Brunel and the cortical microcircuit from Potjans and Diesmann. |