Nonexistence of minimal mass blow-up solution for the 2D cubic Zakharov-Kuznetsov equation

Autor: Chen, Gong, Lan, Yang, Yuan, Xu
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: For the 2D cubic (mass-critical) Zakharov-Kuznetsov equation, \begin{equation*} \partial_t\phi+\partial_{x_1}(\Delta \phi+\phi^3)=0,\quad (t,x)\in [0,\infty)\times \mathbb{R}^{2}, \end{equation*} we prove that there exist no finite/infinite time blow-up solution with minimal mass in the energy space. This nonexistence result is in contrast to the one obtained by Martel-Merle-Rapha\"el [17] for the mass-critical generalized Korteweg-de Vries (gKdV) equation. The proof relies on a refined ODE argument related to the modulation theory and a modified energy-virial Lyapunov functional with a monotonicity property.
Comment: 20 pages
Databáze: arXiv