Nonexistence of minimal mass blow-up solution for the 2D cubic Zakharov-Kuznetsov equation
Autor: | Chen, Gong, Lan, Yang, Yuan, Xu |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For the 2D cubic (mass-critical) Zakharov-Kuznetsov equation, \begin{equation*} \partial_t\phi+\partial_{x_1}(\Delta \phi+\phi^3)=0,\quad (t,x)\in [0,\infty)\times \mathbb{R}^{2}, \end{equation*} we prove that there exist no finite/infinite time blow-up solution with minimal mass in the energy space. This nonexistence result is in contrast to the one obtained by Martel-Merle-Rapha\"el [17] for the mass-critical generalized Korteweg-de Vries (gKdV) equation. The proof relies on a refined ODE argument related to the modulation theory and a modified energy-virial Lyapunov functional with a monotonicity property. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |