Popis: |
In this work, we use a new approach to study the spread of an infectious disease. Indeed, we study a SIR epidemic model with variable infectivity, where the individuals are distributed over a compact subset $D$ of $\R^d$. We define empirical measures which describe the evolution of the state (susceptible, infectious, recovered) of the individuals in the various locations, and the total force of infection in the population. In our model, the individuals do not move. We establish a law of large numbers for these measures, as the population size tends to infinity. |