Maximal equicontinuous factor and minimal map on finitely suslinean continua
Autor: | Daghar, Aymen |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we introduce the notion of negatively regionally proximal pairs of onto maps which coincides with the set of regionally proximal pair of $f^{-1}$, whenever $f$ is an homeomorphism and we prove the maximal equicontinoues factor for any onto map on a locally connected continuum is monotone. Using this, we prove that if $f$ is a minimal map on a finitely suslinean continua $X$, then $X$ must be a topological circle and $f$ some irrational rotation of circle. |
Databáze: | arXiv |
Externí odkaz: |