Maximal equicontinuous factor and minimal map on finitely suslinean continua

Autor: Daghar, Aymen
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we introduce the notion of negatively regionally proximal pairs of onto maps which coincides with the set of regionally proximal pair of $f^{-1}$, whenever $f$ is an homeomorphism and we prove the maximal equicontinoues factor for any onto map on a locally connected continuum is monotone. Using this, we prove that if $f$ is a minimal map on a finitely suslinean continua $X$, then $X$ must be a topological circle and $f$ some irrational rotation of circle.
Databáze: arXiv