Harmonic analysis in Dunkl settings
Autor: | Bui, The Anh |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $L$ be the Dunkl Laplacian on the Euclidean space $\mathbb R^N$ associated with a normalized root $R$ and a multiplicity function $k(\nu)\ge 0, \nu\in R$. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian $L$ are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type $(\mathbb R^N, \|\cdot\|, dw)$, where $dw({\rm x})=\prod_{\nu\in R}\langle \nu,{\rm x}\rangle^{k(\nu)}d{\rm x}$. Next, consider the Dunkl transform denoted by $\mathcal{F}$. We introduce the multiplier operator $T_m$, defined as $T_mf = \mathcal{F}^{-1}(m\mathcal{F}f)$, where $m$ is a bounded function defined on $\mathbb{R}^N$. Our second aim is to prove multiplier theorems, including the H\"ormander multiplier theorem, for $T_m$ on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type $(\mathbb R^N, \|\cdot\|, dw)$. Importantly, our findings present novel results, even in the specific case of the Hardy spaces. Comment: 57 pages. See also at: https://www.researchgate.net/publication/371952480_Harmonic_analysis_in_Dunkl_settings |
Databáze: | arXiv |
Externí odkaz: |