Mahler measures and $L$-functions of $K3$ surfaces

Autor: Trieu, Thu Ha
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We relate the Mahler measure of exact polynomials in arbitrary variables to the Deligne cohomology of the Maillot variety using the Goncharov polylogarithmic complexes. In the four-variable case, we further study the relationship between the Mahler measure and special values of $L$-functions of $K3$ surfaces. The method involves a construction of an element in the motivic cohomology of $K3$ surfaces. We apply our method to the exact polynomial $(x+1)(y+1)(z+1) + t$.
Comment: 32 pages. Comments are welcome!
Databáze: arXiv