Exploring the Abilities of Large Language Models to Solve Proportional Analogies via Knowledge-Enhanced Prompting

Autor: Wijesiriwardene, Thilini, Wickramarachchi, Ruwan, Vennam, Sreeram, Jain, Vinija, Chadha, Aman, Das, Amitava, Kumaraguru, Ponnurangam, Sheth, Amit
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Making analogies is fundamental to cognition. Proportional analogies, which consist of four terms, are often used to assess linguistic and cognitive abilities. For instance, completing analogies like "Oxygen is to Gas as is to " requires identifying the semantic relationship (e.g., "type of") between the first pair of terms ("Oxygen" and "Gas") and finding a second pair that shares the same relationship (e.g., "Aluminum" and "Metal"). In this work, we introduce a 15K Multiple-Choice Question Answering (MCQA) dataset for proportional analogy completion and evaluate the performance of contemporary Large Language Models (LLMs) in various knowledge-enhanced prompt settings. Specifically, we augment prompts with three types of knowledge: exemplar, structured, and targeted. Our results show that despite extensive training data, solving proportional analogies remains challenging for current LLMs, with the best model achieving an accuracy of 55%. Notably, we find that providing targeted knowledge can better assist models in completing proportional analogies compared to providing exemplars or collections of structured knowledge.
Comment: Accepted at COLING 2025
Databáze: arXiv