On Nearly Optimal Paper Moebius Bands
Autor: | Schwartz, Richard Evan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\epsilon<1/384$ and let $\Omega$ be a smooth embedded paper Moebius band of aspect ratio less than $\sqrt 3 + \epsilon$. We prove that $\Omega$ is within Hausdorff distance $18 \sqrt \epsilon$ of an equilateral triangle of perimeter $2 \sqrt 3$. This is an effective and fairly sharp version of our recent theorems in [{\bf S0\/}] about the optimal paper Moebius band. Comment: This is a sequel to my paper "The Optimal paper Moebius Band" (arXiv:2308.12641) but I tried to make it roughly self-contained |
Databáze: | arXiv |
Externí odkaz: |