Existence of Vortex Patch Equilibria for Active Scalars Equations
Autor: | Cuba, Edison |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we investigate the existence of a finite number of vortex patches for the generalized surface quasi-geostrophic (gSQG) equations with $\alpha \in [1,2)$, focusing on configurations that may rotate uniformly, translate, or remain stationary. Using a desingularization technique, we reformulate the problem to resolve singularities arising in the point vortex limit. Assuming a nondegenerate equilibrium of the point vortices, we apply the implicit function theorem to construct time-periodic solutions to the gSQG equations, offering asymptotic descriptions of the vortex patch boundaries. Comment: 41 pages |
Databáze: | arXiv |
Externí odkaz: |