A Doubly Robust Method to Counteract Outcome-Dependent Selection Bias in Multi-Cohort EHR Studies

Autor: Kundu, Ritoban, Shi, Xu, Salvatore, Maxwell, Fritsche, Lars G., Mukherjee, Bhramar
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Selection bias can hinder accurate estimation of association parameters in binary disease risk models using non-probability samples like electronic health records (EHRs). The issue is compounded when participants are recruited from multiple clinics or centers with varying selection mechanisms that may depend on the disease or outcome of interest. Traditional inverse-probability-weighted (IPW) methods, based on constructed parametric selection models, often struggle with misspecifications when selection mechanisms vary across cohorts. This paper introduces a new Joint Augmented Inverse Probability Weighted (JAIPW) method, which integrates individual-level data from multiple cohorts collected under potentially outcome-dependent selection mechanisms, with data from an external probability sample. JAIPW offers double robustness by incorporating a flexible auxiliary score model to address potential misspecifications in the selection models. We outline the asymptotic properties of the JAIPW estimator, and our simulations reveal that JAIPW achieves up to five times lower relative bias and three times lower root mean square error (RMSE) compared to the best performing joint IPW methods under scenarios with misspecified selection models. Applying JAIPW to the Michigan Genomics Initiative (MGI), a multi-clinic EHR-linked biobank, combined with external national probability samples, resulted in cancer-sex association estimates more closely aligned with national estimates. We also analyzed the association between cancer and polygenic risk scores (PRS) in MGI to illustrate a situation where the exposure is not available in the external probability sample.
Databáze: arXiv