Thompson, Ulam, or Gauss? Multi-criteria recommendations for posterior probability computation methods in Bayesian response-adaptive trials

Autor: Kaddaj, Daniel, Pin, Lukas, Baas, Stef, Tang, Edwin Y. N., Robertson, David S., Villar, Sofía S.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: To implement a Bayesian response-adaptive trial it is necessary to evaluate a sequence of posterior probabilities. This sequence is often approximated by simulation due to the unavailability of closed-form formulae to compute it exactly. Approximating these probabilities by simulation can be computationally expensive and impact the accuracy or the range of scenarios that may be explored. An alternative approximation method based on Gaussian distributions can be faster but its accuracy is not guaranteed. The literature lacks practical recommendations for selecting approximation methods and comparing their properties, particularly considering trade-offs between computational speed and accuracy. In this paper, we focus on the case where the trial has a binary endpoint with Beta priors. We first outline an efficient way to compute the posterior probabilities exactly for any number of treatment arms. Then, using exact probability computations, we show how to benchmark calculation methods based on considerations of computational speed, patient benefit, and inferential accuracy. This is done through a range of simulations in the two-armed case, as well as an analysis of the three-armed Established Status Epilepticus Treatment Trial. Finally, we provide practical guidance for which calculation method is most appropriate in different settings, and how to choose the number of simulations if the simulation-based approximation method is used.
Comment: 16 pages, 3 figures, 3 tables
Databáze: arXiv