The \'etendue of a combinatorial space and its dimension
Autor: | Menni, Matí as |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Volume 459, December 2024, 110029 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.aim.2024.110029 |
Popis: | To each simplicial set $X$ we naturally assign an \'etendue ${\'E X}$ whose internal logic captures information about the geometry of $X$. In particular, we show that, for 'non-singular' objects $X$ and $Y$, the \'etendues ${\'E X}$ and ${\'E Y}$ are equivalent if, and only if, $X$ and $Y$ have the same dimension. Many of the results apply to presheaf toposes over 'well-founded' sites. |
Databáze: | arXiv |
Externí odkaz: |