The \'etendue of a combinatorial space and its dimension

Autor: Menni, Matí as
Rok vydání: 2024
Předmět:
Zdroj: Volume 459, December 2024, 110029
Druh dokumentu: Working Paper
DOI: 10.1016/j.aim.2024.110029
Popis: To each simplicial set $X$ we naturally assign an \'etendue ${\'E X}$ whose internal logic captures information about the geometry of $X$. In particular, we show that, for 'non-singular' objects $X$ and $Y$, the \'etendues ${\'E X}$ and ${\'E Y}$ are equivalent if, and only if, $X$ and $Y$ have the same dimension. Many of the results apply to presheaf toposes over 'well-founded' sites.
Databáze: arXiv