Hydrodynamical simulations with strong indirect terms in Fargo-like codes: Numerical aspects of non-inertial frame and artificial viscosity
Autor: | Jordan, Lucas M., Rometsch, Thomas |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Context. Binary star systems allow us to study the planet formation process under extreme conditions. In the early stages, these systems contain a circumbinary disk and a disk around each star. To model the interactions between these disks in the frame of one of the stars, strong fictitious forces must be included in the simulations. The original Fargo and the Fargo3D codes fail to correctly simulate such systems if the indirect term becomes too strong. Aims. We present a different way to compute the indirect term which, together with a tensor artificial viscosity prescription, allows the Fargo code to simulate the circumbinary disks in a non-inertial frame of reference. In this way, the Fargo code can be used to study interactions between circumstellar and circumbinary disks. Results. We find that updating the indirect term becomes relevant when the indirect term becomes stronger than the direct gravitational forces, which occurs for mass ratios of $q > 5\%$. The default artificial viscosity used in the Fargo code inherently produces artificial pressure in a non-inertial frame of reference even in the absence of shocks. This leads to artificial mass ejection from the Hill sphere, starting at brown dwarf masses ($q > 1\%$). These problems can be mitigated by using a tensor artificial viscosity formulation. For high mass ratios, $q > 1\%$, it is also becomes important to initialize the disk in the center-of-mass frame. We expect our proposed changes to be relevant for other grid-based hydrodynamic codes where strong indirect terms occur, or for codes that use artificial viscosity. Comment: 13 pages, 13 figures, accepted by A&A |
Databáze: | arXiv |
Externí odkaz: |