Entropy formula of folding type for $C^{1+\alpha}$ maps

Autor: Liao, Gang, Wang, Shirou
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In the study of non-equilibrium statistical mechanics, Ruelle derived explicit formulae for entropy production of smooth dynamical systems. The vanishing or strictly positivity of entropy production is determined by the entropy formula of folding type \[h_{\mu}(f)= F_{\mu}(f)-\displaystyle\int\sum\nolimits_{\lambda_i(f, x)<0} \lambda_i(f, x)d\mu(x), \] which relates the metric entropy, folding entropy and negative Lyapunov exponents. This paper establishes the formula for all $C^{1+\alpha}$ maps, including those with degeneracy. More specifically, the entropy formula of folding type holds if and, under a condition on the Jacobian of the map, only if $\mu$ has absolutely continuous conditional measures on the stable manifolds. To overcome the degeneracy, the Pesin Theory for general $C^{1+\alpha}$ maps is developed.
Comment: 19 pages
Databáze: arXiv