The zero entropy locus for the Lozi maps
Autor: | Misiurewicz, M., Štimac, S. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the zero entropy locus for the Lozi maps. We first define a region $R$ in the parameter space and prove that for the parameters in $R$, the Lozi maps have the topological entropy zero. $R$ is contained in a larger region where every Lozi map has a unique period-two orbit, and that orbit is attracting. It is easy to see that the zero entropy locus cannot coincide with that larger region since it contains parameters for which the fixed point of the corresponding Lozi map has homoclinic points. |
Databáze: | arXiv |
Externí odkaz: |