The apparent and cosmic rates of short gamma-ray bursts

Autor: Howell, E. J., Burns, E., Goldstein, A.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The short gamma-ray burst (sGRB), GRB~170817A, is often considered a rare event. However, its inferred event rate, $\mathcal{O}(100s)\ \text{Gpc}^{-3}\ \text{yr}^{-1}$, exceeds cosmic sGRB rate estimates from high-redshift samples by an order of magnitude. This discrepancy can be explained by geometric effects related to the structure of the relativistic jet. We first illustrate how adopting a detector flux threshold point estimate rather than an efficiency function, can lead to a large variation in rate estimates. Simulating the Fermi-GBM sGRB detection efficiency, we then show that for a given a universal structured jet profile, one can model a geometric bias with redshift. Assuming different jet profiles, we show a geometrically scaled rate of GRB~170817A is consistent with the cosmic beaming uncorrected rate estimates of short $\gamma$-ray bursts (sGRBs) and that geometry can boost observational rates within $\mathcal{O}(100s)$\,Mpc. We find an apparent GRB~170817A rate of $303_{-300}^{+1580}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ which when corrected for geometry yields $6.15_{-6.06}^{+31.2}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ and $3.34_{-3.29}^{+16.7}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ for two different jet profiles, consistent with pre-2017 estimates of the isotropic sGRB rate. Our study shows how jet structure can impact rate estimations and could allow one to test structured jet profiles. We finally show that modelling the maximum structured jet viewing angle with redshift can transform a cosmic beaming uncorrected rate to a representative estimate of the binary neutron star merger rate. We suggest this framework can be used to demonstrate parity with merger rates or to yield estimates of the successful jet fraction of sGRBs.
Comment: Submitted to MNRAS
Databáze: arXiv