Popis: |
The precise characterization of dynamics in open quantum systems often presents significant challenges, leading to the introduction of various approximations to simplify a model. One commonly used strategy involves Markovian approximations, assuming a memoryless environment. In this study, such approximations are not used and an analytical dynamical depiction of an open quantum system is provided. The system under consideration is an oscillator that is surrounded by a bath of oscillators. The resulting dynamics are characterized by a second-order complex coefficient linear differential equation, which may be either homogeneous or inhomogeneous. Moreover, distinct dynamical regions emerge, depending on certain parameter values. Notably, the steady-state average excitation number (AEN) of the system shows rapid escalation with increasing non-Markovianity, reflecting the intricacies of real-world dynamics. In cases where there is detuning between the system frequency and the environmental central frequency within a non-Markovian regime, the AEN maintains its initial value for an extended period. Furthermore, the application of pulse control can effectively protect the quantum system from decoherence effects without using approximations. The pulse control can not only prolong the relaxation time of the oscillator, but can also be used to speed up the relaxation process, depending on the specifications of the pulse. By employing a kick pulse, the Mpemba effect can be observed in the non-Markovian regime in a surprisingly super-cooling-like effect. |