Convergence of the Laws of Non-Hermitian Sums of Projections
Autor: | Zhou, Max Sun |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the random matrix model $X_n = P_n + i Q_n$, where $P_n$ and $Q_n$ are independently Haar-unitary rotated Hermitian matrices with at most $2$ atoms in their spectra. Let $(M, \tau)$ be a tracial von Neumann algebra and let $p, q \in (M, \tau)$, where $p$ and $q$ are Hermitian and freely independent. Our main result is the following convergence result: if the law of $P_n$ converges to the law of $p$ and the law of $Q_n$ converges to the law of $q$, then the empirical spectral distributions of the $X_n$ converges to the Brown measure of $X = p + i q$. To prove this, we use the Hermitization technique introduced by Girko, along with the algebraic properties of projections to prove the key estimate. We also prove a converse statement by using the properties of the Brown measure of $X$. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |