Determination of the binding and $KD$ probability of the $D^{*}_{s0}(2317)$ from the $(\bar{D}\bar K)^-$ mass distributions in $\Lambda_{b}\to \Lambda_{c} (\bar{D}\bar K)^-$ decays
Autor: | Li, Hai-Peng, Liang, Wei-Hong, Xiao, Chu-Wen, Xie, Ju-Jun, Oset, Eulogio |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the $\Lambda_{b}\to\Lambda_{c}\bar{D}^{0}K^{-}$ and $\Lambda_{b}\to \Lambda_{c}D^{-}\bar{K}^{0}$ reactions which proceed via a Cabibbo and $N_c$ favored process of external emission, and we determine the $\bar{D}^{0}K^{-}$ and $D^{-}\bar{K}^{0}$ mass distributions close to the $\bar{D} \bar{K}$ threshold. For this, we use the tree level contribution plus the rescattering of the meson-meson components, using the extension of the local hidden gauge approach to the charm sector that produces the $D^*_{s0}(2317)$ resonance. We observe a large enhancement of the mass distributions close to threshold due to the presence of this resonance below threshold. Next we undertake the inverse problem of extracting the maximum information on the interaction of the $\bar{D} \bar{K}$ channels from these distributions, and using the resampling method we find that from these data one can obtain precise values of the scattering lengths and effective ranges, the existence of an $I=0$ bound state with a precision of about $4 \;\rm MeV$ in the mass, plus the $\bar{D} \bar{K}$ molecular probability of this state with reasonable precision. Given the fact that the $\Lambda_{b}\to\Lambda_{c}\bar{D}^{0}K^{-}$ reaction is already measured by the LHCb collaboration, it is expected that in the next runs with more statistics of the reaction, these mass distributions can be measured with precision and the method proposed here can be used to determine the nature of the $D^*_{s0}(2317)$, which is still an issue of debate. Comment: 8 pages, 5 figures, 6 tables |
Databáze: | arXiv |
Externí odkaz: |