Popis: |
Given a uniform space $(X, \mathcal{U})$, we denote by $\mathcal{F}(X)$ to the family of all normal upper semicontinuous fuzzy sets $u \colon X \to [0,1]$ with compact support. In this paper, we study transitivity on some uniformities on $\mathcal{F}(X)$: the level-wise uniformity $\mathcal{U}_{\infty}$, the Skorokhod uniformity $\mathcal{U}_{0}$, and the sendograph uniformity $\mathcal{U}_S$. If $f \colon (X, \mathcal{U}) \to (X, \mathcal{U})$ is a continuous function, we mainly characterize when the induced dynamical systems $\widehat{f} \colon (\mathcal{F}(X), \mathcal{U}_{\infty}) \to (\mathcal{F}(X), \mathcal{U}_{\infty})$, $\widehat{f} \colon (\mathcal{F}(X), \mathcal{U}_{0}) \to (\mathcal{F}(X), \mathcal{U}_{0})$ and $\widehat{f} \colon (\mathcal{F}(X), \mathcal{U}_{S}) \to (\mathcal{F}(X), \mathcal{U}_{S})$ are transitive, where $\widehat{f}$ is the Zadeh's extension of $f$. |