A fluorescent-protein spin qubit

Autor: Feder, Jacob S., Soloway, Benjamin S., Verma, Shreya, Geng, Zhi Z., Wang, Shihao, Kifle, Bethel, Riendeau, Emmeline G., Tsaturyan, Yeghishe, Weiss, Leah R., Xie, Mouzhe, Huang, Jun, Esser-Kahn, Aaron, Gagliardi, Laura, Awschalom, David D., Maurer, Peter C.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Optically-addressable spin qubits form the foundation of a new generation of emerging nanoscale sensors. The engineering of these sensors has mainly focused on solid-state systems such as the nitrogen-vacancy (NV) center in diamond. However, NVs are restricted in their ability to interface with biomolecules due to their bulky diamond host. Meanwhile, fluorescent proteins have become the gold standard in bioimaging, as they are genetically encodable and easily integrated with biomolecules. While fluorescent proteins have been suggested to possess a metastable triplet state, they have not been investigated as qubit sensors. Here, we realize an optically-addressable spin qubit in the Enhanced Yellow Fluorescent Protein (EYFP) enabled by a novel spin-readout technique. A near-infrared laser pulse allows for triggered readout of the triplet state with up to 44% spin contrast. Using coherent microwave control of the EYFP spin at liquid-nitrogen temperatures, we measure a spin-lattice relaxation time of $(141 \pm 5)$ {\mu}s, a $(16 \pm 2)$ {\mu}s coherence time under Carr-Purcell-Meiboom-Gill (CPMG) decoupling, and a predicted oscillating (AC) magnetic field sensitivity with an upper bound of $183 \, \mathrm{fT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically-detected magnetic resonance at room temperature in aqueous solution with contrast up to 3%, and measure a static (DC) field sensitivity with an upper bound of $93 \, \mathrm{pT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. Our results establish fluorescent proteins as a powerful new qubit sensor platform and pave the way for applications in the life sciences that are out of reach for solid-state technologies.
Databáze: arXiv