Euclid: Searches for strong gravitational lenses using convolutional neural nets in Early Release Observations of the Perseus field

Autor: Pearce-Casey, R., Nagam, B. C., Wilde, J., Busillo, V., Ulivi, L., Andika, I. T., Manjón-García, A., Leuzzi, L., Matavulj, P., Serjeant, S., Walmsley, M., Barroso, J. A. Acevedo, O'Riordan, C. M., Clément, B., Tortora, C., Collett, T. E., Courbin, F., Gavazzi, R., Metcalf, R. B., Cabanac, R., Courtois, H. M., Crook-Mansour, J., Delchambre, L., Despali, G., Ecker, L. R., Franco, A., Holloway, P., Jahnke, K., Mahler, G., Marchetti, L., Melo, A., Meneghetti, M., Müller, O., Nucita, A. A., Pearson, J., Rojas, K., Scarlata, C., Schuldt, S., Sluse, D., Suyu, S. H., Vaccari, M., Vegetti, S., Verma, A., Vernardos, G., Bolzonella, M., Kluge, M., Saifollahi, T., Schirmer, M., Stone, C., Paulino-Afonso, A., Bazzanini, L., Hogg, N. B., Koopmans, L. V. E., Kruk, S., Mannucci, F., Bromley, J. M., Díaz-Sánchez, A., Dickinson, H. J., Powell, D. M., Bouy, H., Laureijs, R., Altieri, B., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Calabrese, M., Mora, A., Pöntinen, M., Scottez, V., Viel, M., Margalef-Bentabol, B.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The Euclid Wide Survey (EWS) is predicted to find approximately 170 000 galaxy-galaxy strong lenses from its lifetime observation of 14 000 deg^2 of the sky. Detecting this many lenses by visual inspection with professional astronomers and citizen scientists alone is infeasible. Machine learning algorithms, particularly convolutional neural networks (CNNs), have been used as an automated method of detecting strong lenses, and have proven fruitful in finding galaxy-galaxy strong lens candidates. We identify the major challenge to be the automatic detection of galaxy-galaxy strong lenses while simultaneously maintaining a low false positive rate. One aim of this research is to have a quantified starting point on the achieved purity and completeness with our current version of CNN-based detection pipelines for the VIS images of EWS. We select all sources with VIS IE < 23 mag from the Euclid Early Release Observation imaging of the Perseus field. We apply a range of CNN architectures to detect strong lenses in these cutouts. All our networks perform extremely well on simulated data sets and their respective validation sets. However, when applied to real Euclid imaging, the highest lens purity is just 11%. Among all our networks, the false positives are typically identifiable by human volunteers as, for example, spiral galaxies, multiple sources, and artefacts, implying that improvements are still possible, perhaps via a second, more interpretable lens selection filtering stage. There is currently no alternative to human classification of CNN-selected lens candidates. Given the expected 10^5 lensing systems in Euclid, this implies 10^6 objects for human classification, which while very large is not in principle intractable and not without precedent.
Comment: 22 pages, 11 figures, Euclid consortium paper, A&A submitted
Databáze: arXiv