Non-Local Classical Field Theory with Fractional Operators on $\mathbb{S}^3 \times \mathbb{R}^1$ Space
Autor: | Savaliya, Abhi, Bidlan, Ayush |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We present a theoretical framework on non-local classical field theory using fractional integrodifferential operators. Due to the lack of easily manageable symmetries in traditional fractional calculus and the difficulties that arise in the formalism of multi-fractional calculus over $\mathbb{R}^{\text{D}}$ space, we introduce a set of new fractional operators over the $\mathbb{S}^3 \times \mathbb{R}^1$ space. The redefined fractional integral operator results in the non-trivial measure canonically, and they can account for the spacetime symmetries for the underlying space $\mathbb{S}^3 \times \mathbb{R}^1$ with the Lorentzian signature $(+, -, -, -, -)$. We conclude that the field equation for the non-local classical field can be obtained as the consequence of the optimisation of the action by employing the non-local variations in the field after defining the non-local Lagrangian density, namely, $\mathcal{L}(\phi_{a}\left(x\right), \mathbb{\eth}^\alpha \phi_{a}\left(x\right))$, as the function of the symmetric fractional derivative of the field, e.g. in the context of the kinetic term, and the field itself. Comment: The work lacks the necessary physical depth! |
Databáze: | arXiv |
Externí odkaz: |