Interpolation for degree 2 Veroneses of odd dimension
Autor: | Shang, Ray |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A classical fact is that through any $d+3$ general points in $\mathbb{P}_\mathbb{C}^d$ there exists a unique rational normal curve of degree $d$ passing through them. We generalize this by proving the following: when $n$ is odd, for any $\binom{n+2}{2} + n+1$ general points in $\mathbb{P}_\mathbb{C}^{\binom{n+2}{2} - 1}$, there exist at least $2^{n(n-1)}$ degree 2 Veroneses passing through them. This makes substantial progress on a question of Aaron Landesman and Anand Patel, and extends the work of Arthur Coble. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |