Popis: |
Diffusion-based purification (DBP) is a defense against adversarial examples (AEs), amassing popularity for its ability to protect classifiers in an attack-oblivious manner and resistance to strong adversaries with access to the defense. Its robustness has been claimed to ensue from the reliance on diffusion models (DMs) that project the AEs onto the natural distribution. We revisit this claim, focusing on gradient-based strategies that back-propagate the loss gradients through the defense, commonly referred to as ``adaptive attacks". Analytically, we show that such an optimization method invalidates DBP's core foundations, effectively targeting the DM rather than the classifier and restricting the purified outputs to a distribution over malicious samples instead. Thus, we reassess the reported empirical robustness, uncovering implementation flaws in the gradient back-propagation techniques used thus far for DBP. We fix these issues, providing the first reliable gradient library for DBP and demonstrating how adaptive attacks drastically degrade its robustness. We then study a less efficient yet stricter majority-vote setting where the classifier evaluates multiple purified copies of the input to make its decision. Here, DBP's stochasticity enables it to remain partially robust against traditional norm-bounded AEs. We propose a novel adaptation of a recent optimization method against deepfake watermarking that crafts systemic malicious perturbations while ensuring imperceptibility. When integrated with the adaptive attack, it completely defeats DBP, even in the majority-vote setup. Our findings prove that DBP, in its current state, is not a viable defense against AEs. |