On an eigenvalue problem associated with mixed operators under mixed boundary conditions

Autor: Giacomoni, Jacques, Mukherjee, Tuhina, Sharma, Lovelesh
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we study a class of eigenvalue problems involving both local as well as nonlocal operators, precisely the classical Laplace operator and the fractional Laplace operator in the presence of mixed boundary conditions, that is \begin{equation} \label{1} \left\{\begin{split} \mathcal{L}u\: &= \lambda u,~~u>0~ \text{in} ~\Omega, u&=0~~\text{in} ~~{U^c}, \mathcal{N}_s(u)&=0 ~~\text{in} ~~{\mathcal{N}}, \frac{\partial u}{\partial \nu}&=0 ~~\text{in}~~ \partial \Omega \cap \overline{\mathcal{N}}, \end{split} \right.\tag{$P_\lambda$} \end{equation} where $U= (\Omega \cup {\mathcal{N}} \cup (\partial\Omega\cap\overline{\mathcal{N}}))$, $\Omega \subseteq \mathbb{R}^n$ is a non empty open set, $\mathcal{D}$, $\mathcal{N}$ are open subsets of $\mathbb{R}^n\setminus{\bar{\Omega }}$ such that $\overline{{\mathcal{D}} \cup {\mathcal{N}}}= \mathbb{R}^n\setminus{\Omega}$, $\mathcal{D} \cap {\mathcal{N}}= \emptyset $ and $\Omega\cup \mathcal{N}$ is a bounded set with smooth boundary, $\lambda >0$ is a real parameter and $$\mathcal{L}= -\Delta+(-\Delta)^{s},~ \text{for}~s \in (0, 1).$$ We establish the existence and some characteristics of the first eigenvalue and associated eigenfunctions to the above problem, based on the topology of the sets $\mathcal{D}$ and $\mathcal{N}$. Next, we apply these results to establish bifurcation type results, both from zero and infinity for the problem \eqref{ql} which is an asymptotically linear problem inclined with $(P_\lambda)$.
Comment: 25 pages
Databáze: arXiv