Lifting Polynomial Representations of $\mathrm{SL}_2(p^r)$ from $\mathbb{F}_p$ to $\mathbb{Z}/p^s\mathbb{Z}$
Autor: | Parker, Chris, van Beek, Martin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We describe all of the basic $\mathbb{F}_p\mathrm{SL}_2(p^r)$ representations which lift to $\mathbb{Z}/p^s\mathbb{Z}$ representations for $s>1$, observing that they almost never do. We also show that two related indecomposable $\mathbb{F}_p \mathrm{SL}_2(p^r)$ representations cannot be lifted to $\mathbb{Z}/p^s\mathbb{Z}$ representations for $s>1$. |
Databáze: | arXiv |
Externí odkaz: |