Enhancing Computational Efficiency in State-Space Models Using Rao-Blackwellization and 2-Step Approximation
Autor: | Kitagawa, Genshiro |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper explores a Bayesian self-organization method for state-space models, enabling simultaneous state and parameter estimation without repeated likelihood calculations. While efficient for low-dimensional models, high-dimensional cases like seasonal adjustment require many particles. Using Rao-Blackwellization and a 2-step approximation, the method reduces particle use and computation time while maintaining accuracy, as shown in Monte Carlo evaluations. Comment: 23 pages, 6 tables, 12 figures |
Databáze: | arXiv |
Externí odkaz: |