Enhancing Computational Efficiency in State-Space Models Using Rao-Blackwellization and 2-Step Approximation

Autor: Kitagawa, Genshiro
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: This paper explores a Bayesian self-organization method for state-space models, enabling simultaneous state and parameter estimation without repeated likelihood calculations. While efficient for low-dimensional models, high-dimensional cases like seasonal adjustment require many particles. Using Rao-Blackwellization and a 2-step approximation, the method reduces particle use and computation time while maintaining accuracy, as shown in Monte Carlo evaluations.
Comment: 23 pages, 6 tables, 12 figures
Databáze: arXiv