Popis: |
The outcome of conventional topological materials prediction scheme could sensitively depend on first-principles calculations parameters. Symmetry, as a powerful tool, has been exploited to enhance the reliability of predictions. Here, we establish the relationship between the Wyckoff positions (WYPOs) and the phonon wavefunctions at each high-symmetry point (HSP) in all 230 space groups (SGs). Based on this, on one hand, we obtain a complete mapping from WYPO to the occurrence of emergent particles (EMPs) at each HSP in 230 SGs, and establish several rules of enforcing EMPs for phonons; on the other hand, we determine the contribution of the WYPO to the phonon angular momentum. Then we unambiguously identify 20,516,167 phonon EMPs in 111,872 materials in two databases. The purely symmetry-determined wavefunctions generalize the conventional Bloch theorem, could find a wide scope of application to physical properties related with basis functions of irreducible representations. |