On Approximability of Satisfiable $k$-CSPs: VII

Autor: Bhangale, Amey, Khot, Subhash, Liu, Yang P., Minzer, Dor
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\Sigma_1,\ldots,\Sigma_k$ be finite alphabets, and let $\mu$ be a distribution over $\Sigma_1 \times \dots \times \Sigma_k$ in which the probability of each atom is at least $\alpha$. We prove that if $\mu$ does not admit Abelian embeddings, and $f_i: \Sigma_i \to \mathbb{C}$ are $1$-bounded functions (for $i=1,\ldots,k$) such that \[ \left|\mathbb{E}_{(x_1,\dots,x_k) \sim \mu^{\otimes n}}\Big[f_1(x_1) \dots f_k(x_k)\Big]\right| \geq \varepsilon, \] then there exists $L\colon \Sigma_1^n\to\mathbb{C}$ of degree at most $d$ and $\|L\|_2\leq 1$ such that $|\langle f_1, L\rangle|\geq \delta$, where $d$ and $\delta>0$ depend only on $k, \alpha$ and $\varepsilon$. This answers the analytic question posed by Bhangale, Khot, and Minzer (STOC 2022). We also prove several extensions of this result that are useful in subsequent applications.
Databáze: arXiv