Understanding World or Predicting Future? A Comprehensive Survey of World Models

Autor: Ding, Jingtao, Zhang, Yunke, Shang, Yu, Zhang, Yuheng, Zong, Zefang, Feng, Jie, Yuan, Yuan, Su, Hongyuan, Li, Nian, Sukiennik, Nicholas, Xu, Fengli, Li, Yong
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions.
Databáze: arXiv