Rising Rested Bandits: Lower Bounds and Efficient Algorithms
Autor: | Fiandri, Marco, Metelli, Alberto Maria, Trov`o, Francesco |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper is in the field of stochastic Multi-Armed Bandits (MABs), i.e. those sequential selection techniques able to learn online using only the feedback given by the chosen option (a.k.a. $arm$). We study a particular case of the rested bandits in which the arms' expected reward is monotonically non-decreasing and concave. We study the inherent sample complexity of the regret minimization problem by deriving suitable regret lower bounds. Then, we design an algorithm for the rested case $\textit{R-ed-UCB}$, providing a regret bound depending on the properties of the instance and, under certain circumstances, of $\widetilde{\mathcal{O}}(T^{\frac{2}{3}})$. We empirically compare our algorithms with state-of-the-art methods for non-stationary MABs over several synthetically generated tasks and an online model selection problem for a real-world dataset Comment: 63 pages. arXiv admin note: substantial text overlap with arXiv:2212.03798 |
Databáze: | arXiv |
Externí odkaz: |