Einstein manifolds of negative lower bounds on curvature operator of the second Kind
Autor: | Cheng, Haiqing, Wang, Kui |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We demonstrate that $n$-dimension closed Einstein manifolds, whose smallest eigenvalue of the curvature operator of the second kind of $\mathring{R}$ satisfies $\lambda_1 \ge -\theta(n) \bar\lambda$, are either flat or round spheres, where $\bar \lambda$ is the average of the eigenvalues of $\mathring{R}$, and $\theta(n)$ is defined as in equation (1.2). Our result improves a celebrated result (Theorem 1.1) concerning Einstein manifolds with nonnegative curvature operator of the second kind. Comment: All comments are welcome |
Databáze: | arXiv |
Externí odkaz: |