Einstein manifolds of negative lower bounds on curvature operator of the second Kind

Autor: Cheng, Haiqing, Wang, Kui
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We demonstrate that $n$-dimension closed Einstein manifolds, whose smallest eigenvalue of the curvature operator of the second kind of $\mathring{R}$ satisfies $\lambda_1 \ge -\theta(n) \bar\lambda$, are either flat or round spheres, where $\bar \lambda$ is the average of the eigenvalues of $\mathring{R}$, and $\theta(n)$ is defined as in equation (1.2). Our result improves a celebrated result (Theorem 1.1) concerning Einstein manifolds with nonnegative curvature operator of the second kind.
Comment: All comments are welcome
Databáze: arXiv