Chebyshev's method for exponential maps
Autor: | Ghora, Subhasis, Nayak, Tarakanta, Pal, Soumen, Phogat, Pooja |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is proved that the Chebyshev's method applied to an entire function $f$ is a rational map if and only if $f(z) = p(z) e^{q(z)}$, for some polynomials $p$ and $q$. These are referred to as rational Chebyshev maps, and their fixed points are discussed in this article. It is seen that $\infty$ is a parabolic fixed point with multiplicity one bigger than the degree of $q$. Considering $q(z)=p(z)^n+c$, where $p$ is a linear polynomial, $n \in \mathbb{N}$ and $c$ is a non-zero constant, we show that the Chebyshev's method applied to $pe^q$ is affine conjugate to that applied to $z e^{z^n}$. We denote this by $C_n$. All the finite extraneous fixed points of $C_n$ are shown to be repelling. The Julia set $\mathcal{J}(C_n)$ of $C_n$ is found to be preserved under rotations of order $n$ about the origin. For each $n$, the immediate basin of $0$ is proved to be simply connected. For all $n \leq 16$, we prove that $\mathcal{J}(C_n)$ is connected. The Newton's method applied to $ze^{z^n}$ is found to be conjugate to a polynomial, and its dynamics is also completely determined. Comment: 29 pages, 10 figures |
Databáze: | arXiv |
Externí odkaz: |