Second order regularity of solutions of elliptic equations in divergence form with Sobolev coefficients
Autor: | Perelmuter, M. A. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give $L^p$ estimates for the second derivatives of weak solutions to the Dirichlet problem for equation $\Div(\mathbf{A}\nabla u) = f$ in $\Omega\subset \mathbb{R}^d$ with Sobolev coefficients. In particular, for $f\in L^2(\Omega) \bigcap L^s(\Omega)$ $$\|\Delta u\|_{2} \leq \begin{cases} c_1\|f\|_2 + c_2 \|\nabla \mathbf{A}\|_q^2\|f\|_s, & \text{if } 1 < s < d/2, \frac{1}{2}=\frac{2}{q}+ \frac{1}{s} - \frac{2}{d}\\ c_1\|f\|_2 + c_2 \|\nabla \mathbf{A}\|_4^2\|f\|_s, & \text{if } s > d/2 \end{cases}.$$ Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |