On the number of partitions of the hypercube ${\bf Z}_q^n$ into large subcubes

Autor: Tarannikov, Yuriy
Rok vydání: 2024
Předmět:
Zdroj: Siberian Electronic Mathematical Reports, Volume 21 (2024), N 2, pp. 1503-1521
Druh dokumentu: Working Paper
DOI: 10.33048/semi.2024.21.096
Popis: We prove that the number of partitions of the hypercube ${\bf Z}_q^n$ into $q^m$ subcubes of dimension $n-m$ each for fixed $q$, $m$ and growing $n$ is asymptotically equal to $n^{(q^m-1)/(q-1)}$. For the proof, we introduce the operation of the bang of a star matrix and demonstrate that any star matrix, except for a fractal, is expandable under some bang, whereas a fractal remains to be a fractal under any bang.
Databáze: arXiv