Limits on Kaluza-Klein Portal Dark Matter Models
Autor: | Chivukula, R. Sekhar, Gill, Joshua A., Mohan, Kirtimaan A., Sanamyan, George, Sengupta, Dipan, Simmons, Elizabeth H., Wang, Xing |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We revisit the phenomenology of dark-matter (DM) scenarios within radius-stabilized Randall-Sundrum models. Specifically, we consider models where the dark matter candidates are Standard Model (SM) singlets confined to the TeV brane and interact with the SM via spin-2 and spin-0 gravitational Kaluza-Klein (KK) modes. We compute the thermal relic density of DM particles in these models by applying recent work showing that scattering amplitudes of massive spin-2 KK states involve an intricate cancellation between various diagrams. Considering the resulting DM abundance, collider searches, and the absence of a signal in direct DM detection experiments, we show that spin-2 KK portal DM models are highly constrained. We confirm that within the usual thermal freeze-out scenario, scalar dark matter models are essentially ruled out. In contrast, we show that fermion and vector dark matter models are viable in a region of parameter space in which dark matter annihilation through a KK graviton is resonant. Specifically, vector models are viable for dark matter masses ranging from 1.1 TeV to 5.5 TeV for theories in which the scale of couplings of the KK modes is of order 40 TeV or lower. Fermion dark matter models are viable for a similar mass region, but only for KK coupling scales of order 20 TeV. In this work, we provide a complete description of the calculations needed to arrive at these results and, in an appendix, a discussion of new KK-graviton couplings needed for the computations, which have not previously been discussed in the literature. Here, we focus on models in which the radion is light, and the back-reaction of the radion stabilization dynamics on the gravitational background can be neglected. The phenomenology of a model with a heavy radion and the consideration of the effects of the radion stabilization dynamics on the DM abundance are being addressed in forthcoming work. Comment: 42 pages, 24 figures, We dedicate this work to the memory of Rohini Godbole (1952-2024) role model, mentor, and friend |
Databáze: | arXiv |
Externí odkaz: |